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1. Introduction

This report describes a two dimensional viscoplastic plane frame beam element written for
the computer propram FEAP [1, and is a summary and extension of work presented by the
first author in [2). The element is suitable for the analysis of structural beam elements with
rectangular or I shaped cross sections undergoing small displacement or moderate rotationdeformations for which the influence of shear strain is neligible. The effects of both static and
dynamic loadings may be considered.

The viscoplastic constitutive assumption is by definition a time dependent plasticity for-
mulation, in which the rate of straining affects the ultimate yield strength. This is of particular
interest in the analysis of structures subjected to high rate blast loadings. It is also possible to
recover inviscid plasticity through a penalty approach by appropriate definition of the material
properties.

1.1. Report Layout
Section Two describes the development of the weak form of the equations of equilibrium

for the cases of small displacement and moderate rotation deformation. The constitutive theory
and its adaptation to a beam formulation is presented in Section Three. Interpolations for stress
resultants and centroidal axis displacements are introduced and used to assemble the governing
algebraic equations for the element in Section Four. Numerical examples are presented in Sec-
tion Five. Appendices I and 11 contain explicit descriptions of the component element matrices
and of the Newmark time integration scheme used for solution of the nonlinear dynamics prob-
lem. A description of the element input data is found in Appendix III.
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2. Weak Ferm Of The Equatloas Of Equilibrium
In accordance with the Bernoulli - Euler hypothesis that plane sections remain plane and

do not rotate with respect to the centroidal axis, it is possible to define the state of strea in a
beam using three sure resultants -- the axial force p, shear force v and bending moment w.

For a beam subjected to concentrated loads applied quasi-statically at the ends only, the
momentum balance principles require that net force and moment on a differential segment
must vanish. The positive conventions are taken as in F'gure 1. In the cane of small displace-
ments, the equations for axial, transverse and rotational equilibrium take the form

P,, 0 (Ia)

VX- 0 (lb)

MI- v (c)

where (,,indicates differentiation with respect to variable x.
As no specific allowance is made for the effect of deformation due to shear, eqs. (lb) and

(1c) may be combined to yield the following reduced set of equilibrium equations.

PZ- 0 (2a)

M - 0 (2b)

These relations must be identically zero within the domain 11 ' of each element, and thus
the weighted integral form of eqs.(2) must also vanish for arbitrary weight function W'. The
bold type indicates a vectorial or matrix quantity, and superscript t indicates the trnspose
operation.

JW'I rf" - 0 (3)
IM

Letting u represent the axial displacement and w the transverse displacement in a given
beam element of length L, the weight function W' ray be chosep so Q1:'trk quanti-
ties result. w'=fau &w)...W" (BU !WA (4)

Substitution into eq. (3) followed by integration by iparts results iq th O.,GqlrjA fbrm of the
equations of equilibrium. . .... ...

{8UIX 8w,,,) &Cd~ - au4 &+wrn4 - 8WXM 71.P (5)
0f

The boundary terms in this equation form the patural boundaz conditioat fO4 the prob-
lem, and hence may be replaced by the inner product of the virtual nodal displaciments U
with the applied nodal loads q.

It will be necessary to linearize this equation in order that an iterative Newto-Raphson
solution scheme may be used. In anticipation of the rte dependence in the constitutlve theory,
a time stepping form of linearization is enployed. Subscripts n represent the time step
number, superscripts i the iteration counter within a step, and A an incremental quantity. Fol-
lowing the procedure employed in (21, the linearized form of the small displacement equili-
brium equations is found to be

I(aU,5 awm)iP + Anj " SU'4+ (6)

6
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For the case of moderate rotations, in which the transverse deflection w is of the order of
the beam depth, the equilibrum equations are written [31

-0 (7a)

V,:- (PW,,),. (7b)
m,, - v (7c)

As before, eqs. (7b) and (7c0ne combined, yielding

P,1 - 0 (M)
M,. -(pw,,), 1 - o (Sb)

The Galerkin form for the moderate rotation equations of equilibrium is than obtained as
in the previous case.

.I' (&U, 1 + SWI 1W,1) bw,' jfd

- IwmI- ,m0-.- (9)

Linearizing,

p + AP18U,. + 8w, w,.) 8w',' 11 R+ 1

+ j&WxPAw, dx - 8U'q.+, (10)

The second integrand in eq.(10) contains a nonlinear term involving the product of axial
force p with slope w, 1 , which is known as the geomeoric stiffness, 1 G

3. Constitutive Theory

The viscoplastic constitutive theory[4) postulates that the total strain rate may be addi-
tively decomposed into the sum of elastic and inelastic components,

i - it + V (11)

with the elastic strain rate being related to the stress rate by the elastic compliance.

C' - &C (12)

A closed yield surface f is defined in stress (or strewa resultant) space, such that for states
of stress lying within the surface, the material response is purely elastic. Th inelastic strain
rate is then given by

-l V<*(1)L (13)

where

y fh"idl0 perMtseu
0(f) funcion chown to rwpewnt the penlur mtrial

'c#(f)> Opemor whet < (f) >.0, f 40
<O(f)> 0(f), f >0

It is apparent that the inelatc smain rate vector is directed parallel to the gradient of yield
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surface f, in accordance with Drucker's stability postulate(S]. In contrast to the classical plasti-
city theory, stress states outside of the yield surface are allowed, but only with non-zero rates of
strain. This will result in a viscoplastic flow phenomenon. Similarly, if the displacement field is
fixed by external constraints, the stresses will relax with time onto the yield surface, provided
an equilibrium solution exists there.

The rate of viscoplastic flow or stress relaxation depends upon the stresses indirectly
through the function 0(f), which for the current application is taken to be a power law(4].

(14)

The magnitude of inelastic strain rate is also affected by fluidity factor 7. For a given
state of stress, if y is doubled, the inelastic strain rate and hence inelastic strain increment are
also doubled. By setting y sufficiently large, it is possible to model inviscid plasticity. This
forms the penalty approach alluded to in the introduction. The user is warned that y may not
be increased without bound, as indefinite stiffness matrices will result. Selection of reasonable
values for y is illustrated in the section on numerical results.

As a first step in adapting the constitutive theory to the beam element, it is necessary to
define the yield surface f. Consistent with the restrictions stated in the introduction, it is

sufficient to consider only the axial normal stress in determining f. The cross section is con-
sidered to be fully plastified when all fibers have yielded in tension or compression. Intermedi-
ate states are not included.

The stress distribution consists of two rectangular blocks, one in tension, the other in
compression, and is parameterized by ca, the distance from the centroidal axis of the section to
the neutral axis of the stress distribution. (See Figure 2) When a - 0, there is no axial force
acting on the section, and when a - * h/2 there is no bending moment. These represent the
extrema of the axial force - bending moment interaction curve, or yield surface.

It is necessary to consider two separate cases, one in which the neutral axis lies in the
web, and the other in which it lies in one of the flanges. This is facilitated [71 by splitting the
stress blocks into symmetric and anti-symmetric parts with respect to the centroidal axis of the
section. The symmetric part contributes only to axial force, and the anti-symmetric part only to
bending moment.

Case 1: The neutral axis in web. (a -C h12 - if)

The stress resultants p and m are first expressed in terms of the yield stress ay, the
geometric properties of the section, and parameter a.

p - 2ariora (ISa)

in - MP - I,,a 2  (lISb)

Equations (ISa) and (Sb) are then combined to eliminate a, resulting in the following para-
bolic equation for a portion of the yield surface.

l + p41,0[pj (16)

where
b muitov width
b sect" Wik

A seton area

t/ fle thck m

., i..klM
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F, p*VIC force with we moment

in, ,st " moeint with zero force

The expressions for plastic force and plastic moment are

pp - A.', (17)

MP (ivi(h - t") + 1.11' - tr(18)

Case 2: The neutral axis in flange. (a > h12 - t,).
By a similar procedure we find that

p- pP - (h - 2albo w  (090)

M 142A +@ 2lb (19b)

which, upon combining to eliminate a, results in

[p p , _L -_1+I JJ -0 (20)

Together, equations (16) and (20) define the yield surface for positive values of bending
moment. If these functions are plotted using the dimensionless variables

the function is symmetric about the normalized moment axis. When the sign of the stresses in
the assumed distribution is reversed, the yield functions for negative moment are generated.
Due to the double symmetry of the cross sections under consideration, the negative moment
yield functions are simply the reflection of the positive moment functions about the normalized
force axis. If the section is rectangular, the neutral axis is always in the web, and the yield
function reduces to the familiar parabolic function.

ki 2  Im _1.0 (21)PP M

When the positive moment yield function f is plotted together with the negative
moment yield function f-, there is a discontinuity in the slope along the normalized force axis,
forming what is called a corner condition. To obtain a continuous variation of the inelastic
strain rate vector as the corners are approached, a summation of the two yield surfaces will be
adopted[61. The yield functions am not truncated at their intersections, but extended
indefinitely. Three types of region are thus formed; one in which neither function is active, the
second in which only one function is active, and the third in which both are active. The resul-
tant strain rate vector is taken as the vector sum of the contributions from all active yield func-
tions. This provides a continuous variation around the corner region, and also gives a vector
parallel to the force axis when there is zero bending moment.

It is necesuary to discretize the constitutive rate equation in time, and to linearize it with
rspect to the primary dependent variabls a and or. Following the procedure employed in 121,
the rate terms ae replaced with a Euler backward difference, leading to

t- , - t, - c" - or, + A <(c(f)> - + <#(r)> AL (22)

* i -- G
al.. . ..... ........ ..
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The elastic compliance is

1 El

The vector of stresses is

The vector of strains for small displacements isIx,-

The vector of strains for moderate rotations is

U'z + WI

Taking the linear part of eq.(22) and setting it equal to zero defines the tangent constitu-
tive law. The tangent compliance, C T, will contain contributions from each of the yield func-
tions if they are active. For the specific form, see 12].

J- O4, + Ae +I - CTAar7i+ 0 (23)

Weighting this equation with a virtual stress field and integrating over (11 defines the
Galerkin form.

I I(C+ - CTAaJ...i + *.+I& 0 (24a)

G T Mf8P a ml (24b)

The linearization of the moderate rotation strain vector,
{AU'x + W,xA.,.)

+ Aw, J (25)

results in virtual work terms which are conjugate to those appearing in the weak form of equili-
brium. Hence, the symmetry of the linearized equations is preserved for moderate rotations as
well as small displacements.

The derivatives of f+ and f- required in eqs.(22) and (23) are conveniently evaluated
using the chain rule.

Mf. I f.__ (26)
*p P, a(.P/p,)

&L. l Oft" (26b)
am NP (m/m,)

To keep the equations dimensionally consistent, it is ncewur to replace fluidity y by yp.
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4. Finite Ehsut Interpsladsmsn
in order that the integrals in the Gulerkin forms of the equilibrium and constitutive aqua-

tions may be evaluated, it is necessary to sedy interpolation functions for the stress resultants
and the centroidal axis strains.

The displaced shape of the element will be expresed in terms of CO linear shape func-
tions for axial displacement u (x), and C' Hermite polynomials for transverse displacement
w (x).

U1

U2

U u(X)I NIWx 0 0 Nz(x) 0 0 jU 3

Iw(x )JI1 0 H,(X) H2(x) 0 H3(X) H4(x) JU4
us
UG

which in matrix notation becomes

8(x) - NWxU (27)

Strain interpolation relations are obtained by appropriately differentiating the displacement
shape functions.

For small displacements, the incremental strain-displacement operator is linear, and
results in

B(X)AUh,.a - ~ j (28)

For moderate rotations, however, the operator depends upon the current transverse displace-
ment field, w(x)

B(x,w)AUh,, - A w + 1A (29)

7Ue stress resultants in the element will be interpolated using piecewise continuous func-
tions, which will allow for discontinuities in the stues field between elements.

f,() ~11 0 0 iI1(0Im(x)J I.0 NJ30

or

ahx S(x)idr.'+ (31)

Substituting these interpolations into the linearized Galerkin forms for the small displace-
ments equations; leads to

bullf3'()S(x)&cAe.,& - if.if (x)Sx)Cah j (32)

mad

8tJ (x)sI(X)&rAuit 4 f ' x)C x)&rA&,+i t ~'SI(x),',+d (33)
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Evaluation of the integrals by three point Gaus-Lobatto numerical quadrature results in
the following mixed system of equations

0 T fAU.+u q.+, -T&R+ii I (34)

The stress interpolation parameters & are by definition piecewise continuous from element to
element. Hence, the mixed system may be statically condensed to yield a generalized displace-
ment model.

T'Q f'T AUh+ - q.+n - T'.+.X + T'Qj:'l+t - Rh+, (35a)

- - (4.+- TAU.+,) (35b)

In the moderate rotation case, the nonlinear incremental strain displacement matrix
B(x,w) must be used, and the geometric stiffness GO is added to the weak form of equili-
brium.

ITKG T'(w)JfAUh4 j iq.i., - T(),+

"W) 1 A 1 (36)

Statically condensing,
(KG + T'(w)Q~'T(w)JAU +,-q.+, - T'(w)&'+, + T'(w)Q'*'+, R', (37a)

A&04 - -Qi' (*'+, - T(w)AU,+i) (37b)

5. Numerical Results

To illustrate the selection of material properties for the viscoplastic model, two sample
problems involving the axial extension of a one element bar were undertaken.

In the first example, a stress relaxation test, the bar was given an instantaneous axial
extension and the axial force plotted versus time for various values of the fluidity parameter y.
In all cases, the elastic solution was taken as the initial condition. The results of this test are
illustrated in Figure 3. It is apparent that as y is increased, the time required for the stresses to
relax onto the yield surface decreases in an exponential manner. Since the constitutive equa-
tion is of necessity discretized in time, the limiting state of inviscid plasticity may be considered
to have been attained when the time required for relaxation onto the yield surface is less than
one time step At. The value of y corresponding to this limiting state depends upon the
material properties as well as on the initial stress excursion outside of the yield surface. The
user is warned that values of y significantly larger than this limiting value may result in physi-
cally improbable solutions, such as axial contraction of an element when subjected to a tensile
force above the yield load. Hence, it is imperative that proper care be taken in specification of
the material properties.

The second example illustrates the effect of strain rate on the yield stress. The end of the
bar was extended axially at constant velocity, and axial stress plotted versus axial strain for vari-
ous velocities. The value of y was held constant throughout. Results of this example are plot-
ted in Figure 4. When the strain rate is increased, the effective yield stress is also increased. In
the limiting case of vanishingly small strain rate, the inviscid plastic response is recovered.

: ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 W, ! , J ml--" 
".. ....... .....
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The inelastic material response is also dependent upon the value of the exponent used in
the power law 0(f). A similar set of examples should also be undertaken by the user to exam-
ine response sensitivity to this parameter. It has been found by the authors that convergence
difficulties occur if the exponent nnn is set equal to 1 whenever bending moment gradients are
present in the equilibrium solution. As a practical consideration therefore, the value of nnn
should always be set equal to or greater than 2.

To illustrate the use of the element in a dynamic analysis, the case of blast loading on a
simply supported beam was considered. The loading was idealized as a uniformly distributed
triangular pulse, with initial amplitude equal to 2.5 times the static collapse load, and duration
0.5 times the fundamental period. Due to the symmetry of the structure and loading, only one
half of the span was modeled, using ten elements of equal length. Small displacement kinemat-
ics were assumed. The value of -y was set to model inviscid plasticity.

Time history plots were made of the midspan deflection and bending moment (Figures 5
& 6). Plots were also made of the distribution of bending moment along the half span at every
five time steps. (Figures 7,8 & 9) It is apparent from the time history plots that the response is
primarily in the first mode of the structure. The period of constant bending moment (yielding
phase) is accompanied by a parabolic displacement time history. After sufficient energy is dissi-
pated through inelastic deformation, the structure responds in simple harmonic motion at the
fundamental frequency about a residual plastic deformation. The 'noise' which appears in the
moment history and distributions is a consequence of the inertia force contribution from
accelerations in the higher modes.

The overall response of the beam element to blast loading is most satisfactory, and com-
pares favorably with a single degree of freedom approximation given in 181

L .... .. . . .. . . . ... . . . . . .. .. " u n . .. . - - - - --.... ...- - .. .. .. .. . ...
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Appendix I - Compamemi Mahices Far iebmesit Eqtlem
Tbe beam element equations are iven in general form by eq.(34) and (36), and contain

three typical submatrices which result from the weak form of the equilibrium and constitutive
equatiOns. They ae the geometric stiffness KG, the flexibility Q, and the trasfrmlation
matrix T. Substitution from the seh ied polai alows thee murice to be integated
exactly, resulting in
The geometric stiffness (non - wo term only):

36 UL -36 UL
KGin X 3L 4L2 -3L -L 2

3 -36 -3L 36 -3/L
U -L' -3L 4L 2

The flexibility (elastic case only):

L
0 0

QT- 0 L L
3ff 6Ef

0 L L
6Ef 3ff

The transformation matrix (small displacements):

-1 0 0 1 0 0

T- 0 -1 -1 0 1 0
L L

0 0 0 L I

The transformation matrix (moderate rotations):

-1 a b I c

T(w) -- -1 0 1
LL

0 L

The terms a, b, c, and d appearing in the moderate rotation cas am the contraction of the
geometric stiffness RG with the current transverse displacement field parameters w.

j

IA
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Appendix 11 - Tim Integratlon By The Newnmrk Motbod
The incremental dynamic equations of equilibrium for a discrete system are written in~matrix form as

~~MAA_ I + Kg FAU-I+t - I1 I - I AX+ I

where M is a diagonal lumped mass matrix[S) , A the vector of nodal accelerations, K7 the

tangent stiffness matrix, U the nodal displacement vector and R the externaly applied loads
less internal resisting forces, all evaluated at iteration i in time step n+l.

These equations are coveniently solved using the Newmark formula$ in a formulation
having displacement as primary dependent variable[9]. Accordingly,

- Un + AtV, + -2( -W

.+ j - V. + AM - y)A.

The steps for a typical iteration are as follows.
Predictor phase.

U.4 -0.41
V.'.t -V.+

A.+, - 0

Out of balance forces.

AR -R.+, - MA.+1 - K rU.+i

Effective stiffness formulation.

K *AU - AR

Corrector phase.

Uh:1 - U,+1 + AU

A1 - [.+: - /(At2p)

V X' t+ + AtyA .++l

Iterations are performed until a satisfactory convergence tolerance is met. The time step is
then advanced and the procedure repeated.
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Appendix III - Beam -lement Imat Data
This appendix describes the input data necesay to use the plane frme viscoplastic beam

element described in the preceding report. General input data required for use of program
FEAP is outlined in chapter 24 of Ill, and will not be covered here. However, a copy of the
input used for the blast toed analysis example appears at the end of this section.
The following information will be required on Card 2 of the eneral input data:

Dimension of coordinate space - 2
Degrees of freedom per node - 3
Nodes per element - 2
Added degrees of freedom - 0

The following information will be required during material property specification following the
mate macro command (3 cards):
Card I - format (2ii0)

Field 1 - material set number as specified in ekm macro
Field 2 - 1 (for element elmt0l)

Card 2 - format (Sx,aS,7f10.O)

Field I - small or lare for small or moderate deformation kinematics
Field 2 - Young's modulus E (ksi)
Field 3 - section width b (in)
Field 4 - section depth h (in)
Field 5 - web thickness 1. (in)
Field 6 - flange thickness t/(in)
Field 7 - yield stress in tension ay (ksi)
Field 8 - fluidity parameter -, (1/se)

Card 3 - (510.0)
Field 1 - exponent nnn with minimum value of 2, used as integer
Field 2 - mass density p (kip-sec*2/in"4)
Field 3 - shift of yield surface origin in normalized moment direction
Field 4 - shift of yield surface origin in normalized force direction
Field 5 - tolerance on yield criterion f.l (default 0.00001)

The shifts of the yield surface origin allow the user to move the yield surface along the
two normalized stress axes. The tolerance on the yield criterion allows a stress state within ftol
of the yield surface to be considered elastic.
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Input data for blast loading example:

feap Sampe input deck for simp6, saqported beam

11 10 1 2 3 2 0

coor

I 1 0.0 0.0 0.0

I1 0 50.0 0.0 0.0

(blank card)

erm

1 1 1 2 1

(blank card)

boun

1 0 1 1 0

11 0 0 0 1

(blank card)

forc

2 1 0 1.0 0.0 0.0

10 0 0 1.0 0.0 0.0

11 0 0 0.5 0.0 0.0

(blank card)

mate

1 1

small 30000.0 2.0 10.0 5.0 40.0 S0000.0

2.0 0.00001 0.0 0.0 0.0

(blank card)

end

mncr

01 0.00001

a 0.001

beea 0.25 0.5

bms

A 76

lAW 12
M/ff
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net

end

1 0 0.0 0.02 20.0 -1000.0 0.0

stop
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